可行性报告 商业计划书 项目建议书 乡村振兴 资金申请 立项报告 稳评报告 节能报告 产业规划 实施方案 市场调研 企业融资 IPO上市 行业研究 文化旅游 科技成果评价 农业扶持资金 工业扶持资金
  • 首 页
  • 关于我们 资金申请 可研报告 商业计划书
  • 

    全国咨询热线:400-8790-365

    海上风力发电发展概况(可行性报告范文)

    可研报告2018-09-30 09:03:06来源:

    一、海上风力发电发展历程

    0世纪70年代石油危机以后,开始了风能利用的新时代。在一些地理位置不错的陆地上,风能的开发具有一定的经济价值,而人们在另外一个前沿,发现开发风力发电的经济性也相当不错:海上风能。世界上很多国家开始制定计划,考虑开发海上风电场。海上风电场的风速高于陆地风电场的风速,但海上风电场与电网联接的成本比陆地风电场要高。综合上述两个因素,海上风电场的成本和陆地风电场基本相同。兆瓦级的风机,廉价的基础以及关于海上风条件的新知识更加提高了海上风电的经济性。 研究 人员和开发者们将向传统的发电技术进行挑战,海上风力发电迅速发展成为其它发电技术的竞争对手。海上风电场的开发主要集中在欧洲和美国。大致可分为五个不同时期:

    1、欧洲对国家级海上风电场的资源和技术进行 研究 (1977~1988年);

    2、欧洲级海上风电场 研究 ,并开始实施第一批示范计划(1990~1998年);

    3、中型海上风电场(1991~1998年);

    4、大型海上风电场并开发大型风力机(1999~2005年);

    5、大型风力机海上风电场(2005年以后)。

    二、海上风力发电的主要特点

    1、海上风力资源丰富,比陆地风力发电产能大;

    2、环境影响小;

    3、电力传输和接入电网的技术难度大;

    4、建设和维护的技术难度大、费用高。

    三、风机的海上基础

    1、较混凝土便宜的钢材

    丹麦的两个电力集团公司和三个工程公司于1996~1997年间首先开始对海上风机基础的设计和投资进行了 研究 ,在报告中提出,对于较大海上风电场的风机基础,钢结构比混凝土结构更加适合。所有新技术的应用似乎至少在水深15米或更深的深度下才会带来经济效益。无论如何,在较深的水中建风场其边际成本要比先前预算的要少一点。对于1.5兆瓦的风机,其风机基础和并网投资仅比丹麦Vindeby和TunoeKnob海上风电场450~500千瓦风机相应的投资高出10%到20%,这就是以上所述的经济概念。

    2、设计寿命

    与大多数人们的认识相反,钢结构腐蚀并不是主要关注的问题。海上石油钻塔的经验表明阴极防腐措施可以有效防止钢结构的腐蚀。海上风机表面保护(涂颜料)一般都采取较陆地风机防腐保护级别高的防护措施。石油钻塔的基础一般能够维持50年,也就是其钢结构基础设计的寿命。

    3、参考风机

    在防腐 研究 中,采用了一台现代的1.5兆瓦三叶片上风向风机,其轮毂高度大约为55米(180英尺),转子直径为64米(210英尺)。这台风机的轮毂高度相比陆地风机要偏低一些。在德国北部,一台典型的1.5兆瓦风机轮毂高度大约为60~80米(200到260英尺)。由于水面十分光滑,海水表面粗糙度低,海平面摩擦力小,因而风切变(即风速随高度的变化)小,不需要很高的塔架,可降低风电机组成本。另外海上风的湍流强度低,海面与其上面的空气温度差比陆地表面与其上面的空气温差小,又没有复杂地形对气流的影响,作用在风电机组上的疲劳载荷减少,可延长使用寿命,所以使用较低的风塔比较合算。

    4、海上基础类型

    1)常用的混凝土基础

    丹麦的第一个引航工程采用混凝土引力沉箱基础。顾名思义,引力基础主要依靠地球引力使涡轮机保持在垂直的位置。

    丹麦的第一个引航工程采用混凝土引力沉箱基础

    保Vindeby和TunoeKnob海上风电场基础就采用了这种传统技术。在这两个风场附近的码头用钢筋混凝土将沉箱基础建起来,然后使其漂到安装位置,并用沙砾装满以获得必要的重量,继而将其沉人海底,这个原理更像传统的桥梁建筑。两个风场的基础呈圆锥形,可以起到拦截海上浮冰的作用。这项工作很有必要,因为在寒冷的冬天,在波罗的海和卡特加特海峡可以一览无遗地看到坚硬的冰块。在混凝土基础技术中,整个基础的投资大约与水深的平方成比例。Vindeby和TunoeKnob的水深变化范围在2.5~7.5米之间,说明每个混凝土基础的平均重量为1050吨。根据这个二次方规则,在水深10米以上的这些混凝土平台,因受其重量和投资的限制,混凝土基础往往被禁止采用。因此,为了突破这种投资障碍,有必要发展新的技术。

    2)重力+钢筋基础

    现有的大多数海上风电场采用重力基础,新技术提供了一种类似于钢筋混凝土重力沉箱的方法。该方法用圆柱钢管取代钢筋混凝土,将其嵌入到海床的扁钢箱里。

    3)单桩基础

    单桩是一种简单的结构,由一个直径在3.5米到4.5米之间的钢桩构成。钢桩安装在海床下10米到20米的地方,其深度由海床地面的类型决定。单桩基础有力地将风塔伸到水下及海床内。这种基础一个重要的优点是不需整理海床。但是,它需要重型打桩设备,而且对于海床内有很多大漂石的位置采用这种基础类型不太适合。如果在打桩过程中遇到一块大漂石,一般可能在石头上钻孔,然后用爆破物将之炸开,继而打成小石头。

    4)三脚架基础

    三脚架基础吸取了石油工业中的一些经验,采用了重量轻价格合算的三脚钢套管。风塔下面的钢桩分布着一些钢架,这些框架分掉了塔架对于三个钢桩的压力。由于土壤条件和冰冻负荷,这三个钢桩被埋置于海床下10~20米的地方。

    四、海上风电场的并网

    1、电网

    丹麦输电网1998年总发电量共计10吉瓦。在建或未建的海上风电场共计4.1吉瓦。丹麦西部和东部电网没有直接并网,而是采用AC(交流输电线)方式并入德国和瑞典的输电系统。其它风电场与瑞典、挪威和德国的联网方式采用直流方式。海上风电场的并网本身并不是一个主要技术问题,该技术人所共知。但是为确保经济合理性,对偏远海上风电场的并网技术进行优化非常重要。丹麦第一批商用海上风电场位于距离海岸15~40千米的海域,水深5~10或15米,风电场装机在120到150兆瓦之间。第一批风电场(2002年)使用1.5兆瓦的风力发电机,该机型需在陆地上试运行5年。

    2、敷设海底电缆

    海上风电场通过敷设海底电缆与主电网并联,此种技术众所周知。为了减少由于捕鱼工具、锚等对海底电缆造成破坏的风险,海底电缆必须埋起来。如果底部条件允许的话,用水冲海床(使用高压喷水),然后使电缆置人海床而不是将电缆掘进或投入海床,这样做是最经济的。

    3、电压

    丹麦 规划 的120-150兆瓦的大风电场可能与30~33千伏的电压等级相联。每个风电场中,会有一个30~150千伏变电站的平台和许多维修设备。与大陆的联结采用150千伏电压等级。

    4、无功功率,高压直流输电

    无功功率和交流电相位改变相关,相位的改变使能量通过电网传输更加困难。海底电缆有一个大电容,它有助于为风电场提供无功功率。这种在系统中建立可能是最佳的可变无功功率补偿方式决定于准确的电网配置。如果风电场距离主电网很远,高压直流输电(HVDC)联网也是一个可取的方法。

    5、远程监控

    显然,海上风电场远程监控要比陆地远程监控更重要一些,TunoeKnob和Vindeby海上风电场采用远程监控已达数年。人们预测这些风电场用1.5兆瓦的大机组,在每件设备上安装一些特别的传感器,以用来连续地 分析 传感器在设备磨损后改变工作模式而产生的细微振动,这样可能会带来一定的经济效益。同样地,为了确保机器得到适当的检修,工业中一些产业也需要对这项技术非常了解。

    6、定期检修

    在天气条件比较恶劣的情况下,维修人员很难接近风机,风机得不到正常检修和维护,造成安全隐患。所以,确保海上风机高可靠性显得尤其重要。对于一些偏远的海上风电场,应合理设计风机的定期检修程序。

    五、海上风力发电设备的安装过程

    海上风力发电设备的安装过程示例图(1)

    海上风力发电设备的安装过程示例图(2)

    海上风力发电设备的安装过程示例图(3)

    海上风力发电设备的安装过程示例图(4)

    海上风力发电设备的安装过程示例图(5)

    海上风力发电设备的安装过程示例图(6)

    海上风力发电设备的安装过程示例图(7)

    海上风力发电设备的安装过程示例图(8)

    海上风力发电设备的安装过程示例图(9)

    海上风力发电设备的安装过程示例图(10)

    海上风力发电设备的安装过程示例图(11)

    海上风力发电设备的安装过程示例图(12)

    海上风力发电设备的安装过程示例图(13)

    海上风力发电设备的安装过程示例图(14)

    六、前景

    海上风电场的发电成本与经济规模有关,包括海上风电机的单机容量和每个风电场机组的台数。铺设150兆瓦海上风电场用的海底电缆与100兆瓦的差不多,机组的大规模生产和采用钢结构基础可降低成本。目前海上风电场的最佳规模为120~150兆瓦。在海上风电场的总投资中,风电机组占51%、基础16%、电气接入系统19%、其它14%。丹麦电力公司对海上风电场发电成本的 研究 表明,用IEA(国际能源局)标准方法,目前的技术水平和20年设计寿命,估测的发电成本是每千瓦时0.36丹麦克朗(0.05美元或人民币0.42元)。如果寿命按25年计,还可减少9%。欧洲一些国家都为海上风电场的发展进行了 规划 。从长远看,荷兰的目标是到2020年风电装机2.75吉瓦,其中1.25吉瓦安装在北海大陆架区域。近期计划主要是建设商业性示范工程,在2005年前丹麦拟开工兴建5个海上风电场,每个规模约150兆瓦,加上其它已建项目累计约750兆瓦。荷兰计划先建100兆瓦的示范项目,选在EgmondannZee岸外12海里处,采用1.5兆瓦或2.0兆瓦的机组。德国的计划包括"SKY2000"项目,规模100兆瓦,距离Lubeck湾15千米的波罗的海中;400兆瓦项目在距离Helgloand岛17千米的北海,最终规模将达到1.2吉瓦,采用单机容量4兆瓦或5兆瓦机组。此外,爱尔兰和比利时分别有250兆瓦和150兆瓦的海上风电场计划。海上丰富的风能资源和当今技术的可行性,预示着将成为一个迅速发展的市场,风电设备产业将是一个经济增长点。欧洲海上风电场2010年后将会大规模开发,中国作为发展中国家,应跟踪海上风电技术的发展,因为中国也有丰富的海上风能资源。中国东部沿海水深2-15米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即700吉瓦,而且距离电力负荷中心很近,随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源。


    免责申明:本文仅为中经纵横 市场 研究 观点,不代表其他任何投资依据或执行标准等相关行为。如有其他问题,敬请来电垂询:4008099707。特此说明。

    可行性报告 模板

    更多>>
  • 汽车轮毂项目可行性研究报告
    汽车轮毂项目可行性研究报告

      轮毂,英文名称:WheelHub,WheelHubUnit,汽车轮胎内以轴为中心用于支撑轮胎的圆柱形金属部件,通俗地说,就是车轮中心安装车轴的部位

  • 城铁项目可行性研究报告
    城铁项目可行性研究报告

      很长一段时间里,人们一直习惯把城市铁路称为轻轨。北京市地铁运营公司相关负责人表示,轻轨这种说法是不准确的,轻轨的说法是按运输方

  • 工业废物项目可行性研究报告
    工业废物项目可行性研究报告

      工业废物,即工业固体废弃物,是指工矿企业在生产活动过程中排放出来的各种废渣、粉尘及其他废物等。如化学工业的酸碱污泥、机械工业的

  • 房地产市场项目可行性分析报告模板
    房地产市场项目可行性分析报告模板

    生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现...

  • 

    网站地图