第一节 上游产业发展状况 分析
原子力显微镜的重要零件有探针和激光器,而其探针大多由矽制成。以下就以矽和激光产业为上游进行 分析 。
1、矽
1)多晶矽:
近几年由于市场需求的快速增长,作为半导体、光伏太阳能电池的重要原材料多晶矽材料市场供应紧张局面仍在继续。2006年世界多晶矽产量为32950吨,其中半导体用多晶硅产量约19250吨,太阳能电池用产量约13700吨。从需求来看,半导体用多晶矽需求约在20900吨,太阳能电池用多晶矽需求约在18000吨,总的需求量约为38900吨,产需缺口5950吨。预测世界多晶矽生产企业的产能扩大需要2年左右的时间。
我国国内对多晶硅材料的需求约4947吨,供需差距很大,95%以上的多晶矽仍来自进口,提升突破多晶硅产业化技术,节能降耗是 行业 的迫切重要任务。多晶矽材料的短缺及其价格的上涨,带来国内对多晶矽投资、引资的强烈增长,因此为了保证多晶硅产业的健康、有序、快速的发展,应注意以下几点:
(1)全球7大多晶矽材料厂的扩产产能将在2008年陆续释放,另外一些新建的工厂也会有部分产量产出,多晶矽材料市场将会得到进一步的充实。
(2)多晶矽产品纯度高,工艺要求严格,设备专用而且资金投入大, 行业 技术进步快,生产中的副产品回收利用、三废处理和循环经济投入大,需要加大 研究 费用的投入,才会显现产业链和规模的综合效应。
(3)近几年国内多晶矽实际需求量约1万吨,对已有基础条件的多晶矽生产企业,加大产业化新技术的突破,同时新建2-3家多晶硅生产线,形成我国的多晶矽产业是必要的。
(4)国内多晶矽厂家将在人才不足、生产成本、产品质量、价格和节能减排等方面面临严峻挑战;
(5)为了规范 行业 和市场的发展,建议上下游 行业 企业紧密结合,组织半导体用多晶矽标准的修订,加快太阳能电池用多晶矽标准的制定。
2)单晶矽:
2006年我国国内硅单晶总产量为3739.7吨,总销售额约117.8亿元,其中半导体级硅单晶产量约551.4吨,太阳能级硅单晶约3188.3吨,太阳能级硅单晶占了总产量的85%。
太阳能级矽单晶产量的大幅增加主要是受太阳能电池市场快速增长的拉动,以及国产单晶炉质量提高、价格较国外单晶炉低等原因。半导体级矽单晶总的发展状况趋于平稳。2006年全球矽片总销售额约为103亿美元,我国销售收入总额达到117.8亿元,占世界总额的13.6%,与2005年相比有较大幅度上升,但所占世界比例仍较小。在硅材料中,硅抛光片的技术含量高,抛光片的发展标志着国内硅产品的进步。目前,我国绝大部分企业只能生产4~6英寸硅外延片,8英寸、12英寸硅外延片正在 研究 试制。
矽材料市场前景广阔,我国硅单晶的产量、销售收入近几年递增较快,以中小尺寸为主的硅片生产已成为国际公认的事实,为世界和我国集成电路、半导体分立器件和光伏太阳能电池产业的发展做出了较大的贡献。
2、激光产业
我国激光技术的发展已有40余年的历史,早在1961年中科院长春光学精密机械 研究 所就研制出我国第一台红宝石激光器,仅比美国休斯公司梅曼(T.H.Maiman)研制成功的世界首台激光器晚半年,技术水平与国外相差不大。经过40多年的艰苦努力,我国激光技术 研究 获得重大突破,激光产业也从无到有,成为我国科学界最活跃的领域之一。我国激光产业经过几十年的发展,已在国内占据了较大的市场份额,在产品质量、性能等方面初步具备了与国外大公司竞争的能力。
目前中国激光产品主要生产厂家主要分布在湖北、北京、江苏、上海和广东(含深圳、珠海特区)等经济发达省市,这些省市的年销售额都已超亿元,其中湖北省已接近20亿元,这些地区的年销售额约占全国激光产品市场总额的90%。目前已基本形成以上述省市为主体的华中地区、环渤海湾、长江三角洲、珠江三角洲4大激光产业群,激光晶体、关键元器件、配套件、激光器、激光系统、应用开发、公共服务平台已形成较完整的激光产业链。可以预计,在“十一五” 规划 的深入落实过程中,中国激光产业必定会有较大发展,激光制造设备技术水平会得到大幅度提高,在信息、能源、交通运输、电子、冶金、机械等支柱产业中会得到更深入的应用,进而提高这些 行业 的自主创新能力,使其产品适应全球化的发展潮流,形成新的经济增长点,在提高市场竞争力中发挥重大作用。
2007和2008年我国激光产品市场预计仍继续保持较强的发展势头,市场销售总额超过60亿元。其中,激光加工设备的销售依旧看涨,光通信稳步发展,激光测距、测量与检测仪器会有高速增长,激光医疗设备大致持平,而激光器、材料/元器件会有较大发展。
第二节 下游产业发展情况 分析
原子力显微镜广泛应用于物理、化学、金属、半导体、微电子、纳米材料、生物、生命科学等众多科学领域中,以下就以纳米材料为其下游进行 分析 。
1、纳米材料 研究 的现状
自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理 研究 的前沿热点是在80年代中期以后。从 研究 的内涵和特点大致可划分为三个阶段。
第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜), 研究 评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的 研究 在80年代末期一度形成热潮。 研究 的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。
第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料 研究 的主导方向。
第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料 研究 的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。
如果说第一阶段和第二阶段的 研究 在某种程度上带有一定的随机性,那么这一阶段 研究 的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在《自然》杂志上发表论文,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。可见,纳米结构的组装体系很可能成为纳米材料 研究 的前沿主导方向。
2、纳米材料 研究 的特点
1)纳米材料 研究 的内涵不断扩大
第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料 研究 对象又涉及到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶),例如气凝胶孔隙率高于90%,孔径大小为纳米级,这就导致孔隙间的材料实际上是纳米尺度的微粒或丝,这种纳米结构为嵌镶、组装纳米微粒提供一个三维空间。纳米管的出现,丰富了纳米材料 研究 的内涵,为合成组装纳米材料提供了新的机遇。
2)纳米材料的概念不断拓宽
1994年以前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构的材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间的基体,因此,纳米结构材料内涵变得丰富多彩。
3)纳米材料的应用成为人们关注的热点
经过第一阶段和第二阶段 研究 ,人们已经发现纳米材料所具备的不同于常规材料的新特性,对传统工业和常规产品会产生重要的影响。日本、美国和西欧都相继把实验室的成果转化为规模生产,据不完全统计,国际上已有20多个纳米材料公司经营粉体生产线,其中陶瓷纳米粉体对常规陶瓷和高技术陶瓷的改性、纳米功能涂层的制备技术和涂层工艺、纳米添加功能油漆涂料的 研究 、纳米添加塑料改性以及纳米材料在环保、能源、医药等领域的应用,磨料、釉料以及纸张和纤维填料的纳米化 研究 也相继展开。纳米材料及其相关的产品从1994年开始已陆续进入市场,所创造的经济效益以20%速度增长。
3、纳米材料的发展趋势
1)加强控制工程的 研究
在纳米材料制备科学和技术 研究 方面一个重要的趋势是加强控制工程的 研究 ,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。国际上近一两年来,纳米材料控制工程的 研究 主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效应和渗流效应;三是通过设计纳米丝、管等的阵列体系(包括有序阵列和无序阵列)来获得所需要的特性。
2)近年来引人注目的几具新动向
(1)纳米组装体系蓝绿光的 研究 出现新的苗头。日本Nippon钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的SiO2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。
(2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级;
(3)颗粒膜巨磁电阻尚有潜力。1992年,纳米颗粒膜巨磁电阻发现以来,一直引起人们的关注,美国布朗大学的科学家最近在4K的温度下,几个特斯拉的磁场,R/R上升到50%,目前这一领域 研究 追求的目标是提高工作温度,降低磁场。如果在室温和零点几特斯拉磁场下,颗粒膜巨磁阻能达到10%,那么就将接近适用的使用目标。目前国际上科学家们正在这一领域努力。
(4)纳米组装体系设计和制造有新进展。美国加利福尼亚大学化学工程系成功地把纳米AU颗粒组装到DM的分子上形成纳米晶分子组装体系;美国利用自组装技术将几百支单壁纳米碳管组成晶体索"Ropes",这种索具有金属特性,室温下电阻率小于10-4W/cm;将纳米三碘化铅组装到尼龙(nylon-11)上,在X射线照射下具有强的光电导性能,利用这种性能为发展数字射线照相奠定了基础。