第一节 分离膜的简介
分离膜:是一种具有选择性透过能力的膜型材料。通常按分离机理和适用范围可分为微滤膜,超滤膜,纳滤膜,反渗透膜,渗透蒸发膜,离子交换膜等。分离膜是一种特殊的、具有选择性透过功能的薄层物质,它能使流体内的一种或几种物质透过,而其他物质不透过,从而起到浓缩和分离纯化的作用。自膜技术问世以来,微滤膜、离子交换膜、反渗透膜、超滤膜、气体膜分离等相继得到广泛应用,由于其可在维持原生物体系环境的条件下实现分离,并可高效地浓缩、富集产物,有效地去除杂质,加之操作方便,结构紧凑、能耗低,过程简化,无二次污染,且不需添加化学物品,正逐步成为食品工业及医药中的基本单位操作过程。(立项申请)
第二节 分离膜的制备方法
近十年来,各种石墨烯基膜相继被开发并用于膜分离领域,目前石墨烯基膜的制备方法主要包括真空抽滤法、喷/旋涂法、层层自组装法以及共混法。
1真空抽滤法
真空抽滤法是制备石墨烯基膜最为常用的方法,其主要过程如下: 先将石墨烯或氧化石墨烯分散液倒入垫好滤膜的抽滤瓶中,再进行真空抽滤,从而使薄膜附着在底膜上。
Dikin等首次利用抽滤的方法制备了厚度为1~30μm的氧化石墨烯薄膜,力学测试表明GO薄膜模量高达32 GPa,这一强度远高于传统的薄膜。随后,Li等将真空抽滤法制得的化学还原石墨烯(CCG)膜应用于压力驱使下的液相分离。实验表明在90 ℃还原条件下,水通量达到41L·m-2·h-1·bar-1,且纳米金和纳米铂颗粒基本被拦截。Huang等通过真空抽滤法在聚碳酸酯(PC)膜上得到GO超滤分离膜。 研究 发现GO片层间的纳米级褶皱是离子、分子的主要通道,通过控制外加压力、盐浓度以及pH值可调节褶皱尺寸,以实现对GO分离膜孔道结构和分子筛分性能的直接调控。GO表面含氧官能团使其片层间距较大,不利于小分子截留,因此,通过还原去除表面官能团后可进一步减小其片层间距继而增加截留性能。
真空抽滤法操作简单、底膜选择多样、膜厚度可通过溶液浓度进行调控。此方法制得的薄膜机械性能好、分离性能优异,但是在与底膜分离过程中薄膜容易破损,完整性难以维持。
2旋/喷涂法
旋涂法(spin coating)制膜工艺简单高效,主要通过调整转速,使溶液均匀分散在基底上,再经过干燥即得薄膜。2008年,Becerril等利用旋涂法分别在玻璃和石英基底表面均匀涂覆氧化石墨烯溶液制得GO薄膜。Lue等发现与滴涂法(dropcoating)相比,旋涂法构筑的全氟磺酸酯/氧化石墨烯复合膜有利于产生更有序的(well-aligned)片层堆叠结构,从而降低燃料渗透性(fuel permeability)并提高燃料电池性能。Kim等发现GO片层间的水分在旋涂过程中会被去除,从而形成很强的毛细管力,有利于GO片层沉积并形成相对致密的结构。该分离膜气体通量与跨膜压力有关,与气体相对分子质量成反比(CO2除外),140 ℃时,H2/ CO2选择渗透性可达40。旋涂法所需设备结构简单、条件可控,膜面积及其厚度在一定程度上可调,但是,此方法难以大面积制备且存在成膜不均匀的问题。喷涂法则主要通过喷涂设备将氧化石墨烯或石墨烯分散液均匀喷在基底上形成膜。
2. 3层层自组装法
层层自组装法(LbL)借助氢键、静电引力、共价键等作用逐层沉积自组装成多层膜。LbL法作为一种高效、简单的方法成功构筑出多种超薄复合膜结构。氧化石墨烯表面丰富的官能团及其良好的水溶性,使其成为LbL法构筑复合膜的理想材料之一。Hu等率先利用聚多巴胺修饰的聚砜膜作为支撑层,均苯三甲酰氯(TMC)作为交联剂,使GO层层自组装形成多层GO薄膜。此方法通过共价交联作用构筑出稳定的石墨烯分离膜结构,该膜在反复冲刷以及超声条件下仍可保持完整,其水通量可达传统纳滤膜的4~10倍。Zhao等则在外加电场作用下,利用LbL法制备出聚乙烯亚胺/氧化石墨烯复合膜。实验表明外加电场在复合膜组装过程中加速了GO在基体上的沉积速度以及沉积量,从而缩短组装时间及减少浸沉次数。此外,电场作为一种均匀的外力作用使得GO层在基质上均匀展开,从而形成紧密有序的气体保护层。外加电压为25V时,PEI/GO膜对氢的截留率比普通复合膜提高65%,该复合膜可作为金属表面保护层有效抵挡氢侵入从而抑制氢腐蚀。层层自组装法操作简单,制膜过程不受基底形状大小的束缚,制得的薄膜具有良好的机械性能,主要应用于构筑复杂的多层膜结构。
4共混法
石墨烯具有优异的物理化学性能,能够与特定聚合物复合形成新型复合材料,实现对膜的功能化改性。将石墨烯与制膜高分子材料或高分子前驱体进行共混,可构筑出各种石墨烯改性的分离膜,由于高分子材料的稳定性,使得共混法得到的石墨烯改性膜在水中以及酸碱条件下可长时间稳定存在。Wang等将聚偏氟乙烯(PVDF)和GO分散在2-甲基甲酰胺中,然后通过相转化过程制得混合超滤膜。实验发现:当GO添加量为0.20wt%时,渗透率上升至96.4%,接触角由79.2°下降至60.7°。随后,Fryczkowska等 研究 GO对于PVDF膜性能的影响,证实GO的加入使膜亲水性增加、孔隙率降低、孔径增大,从而提高膜通量。Ouyang等则通过共混法将氧化钴/氧化石墨烯复合物与聚醚砜制成超滤膜。实验表明相较原始膜,Co3O4-GO含量为1.5%时,复合膜水通量提高344%且牛血清蛋白的截留率仍在94%以上。活性污泥(SV=30%)过滤实验后,膜通量恢复率高达81.1%,作为对比而未改性的初始膜仅为55.7%,膜性能的提高主要归结为纳米片在聚合物基体中均匀分布提高了膜表面的亲水性。与普通膜相比,共混法制备的石墨烯杂化膜的通量、抗污性和机械性能均得到了显著提高。
第三节 分离膜的发展现状
工业化进程的快速发展,给人们生活带来便利的同时,也面临着废水、废气等污染导致的环境问题。作为治理环境的有效技术之一,膜分离技术出现于20世纪初。在实际应用中,膜分离技术面临诸多挑战,膜污染以及低分离效率为其主要限制因素。为进一步发展完善膜分离技术,不同的分离膜材料相继被开发出来,其中具有优异选择性和稳定性的石墨烯材料脱颖而出,成为最具潜力的非传统膜材料。石墨烯是碳原子以六元环形式构筑形成的二维单层晶体,具有优异的机械性能及稳定性。
氧化石墨烯(graphene oxide,GO)具有和石墨烯相似的二维平面结构,其表面分布着大量羟基、羧基和环氧基等极性含氧官能团。这些基团的存在有利于对石墨烯基膜进行功能化设计,从而达到改变膜表面电荷、疏水性以及调节层间尺寸的作用。此外,制备石墨烯基膜的原材料( 石墨) 来源广泛、价格低廉,为石墨烯基膜大量制备及广泛应用提供了有利基础。
第四节 分离膜 行业 的发展前景
石墨烯是目前可作分离膜的最薄材料,完整的石墨烯对于所有分子具有不可渗透性,而将石墨烯纳米片进行面面堆叠所形成的宏观膜可以利用片与片之间的纳米通道进行物质分离。另一方面,基于分子筛分效应引入纳米孔或人工设计褶皱得到石墨烯材料可作为高效分离膜。石墨烯基分离膜不仅可用于气体分离、CO2捕集,而且在海水淡化、同位素分离等新兴领域具有广阔应用前景。
免责申明:本文仅为中经纵横 市场 研究 观点,不代表其他任何投资依据或执行标准等相关行为。如有其他问题,敬请来电垂询:4008099707。特此说明。